

Status of experiments using the KURRI 150 MeV ADSR FFAG

S. L. Sheehy FFAG'14, BNL, September 2014

With thanks to the KURRI-FFAG collaboration including members from Japan, UK & US

Motivation: High Power FFAGs

FFAGs have not yet demonstrated:

- 1. High bunch charge capability
- 2. The fundamental limitations of FFAGs with high current beams
- 3. High repetition rates in the kHz range or CW beams
- 4. Better reliability than a synchrotron

In these experiments, we can potentially start to address (1) and (2).

150 MeV ADSR FFAG

Scaling FFAG Injection 11 MeV, H- charge exchange up to 100 or 150 MeV

(for more details see Y. Ishi's talk, from Monday)

Outline

- Orbit matching
- Closed orbit distortion & correction
- Field index
- Dispersion
- Energy loss on the foil

Diagnostics in the ring

List of monitors

7 ports for radial probes (blue arrow, ICF70)
4 portable radial probes remote cntrl'd
2 portable radial probes manual cntrl'd
1 unportable radial probe (green arrow)
3 bunch monitors
1 faraday cup / 1 screen monitor
1 perturbator

H- Beam F5 S5 F4 S4 Ext. kicker1 F3	7 pc
F7 F6 F7 Foil	
cavity S8 \longrightarrow S2 \longrightarrow F1	
ext. kicker2 S9 ext. septum F9 F12	_
S10 F10 S11 F11	

Diagram courtesy Y. Ishi

SI	-radial probe removed
FI	radial probe
S2	radial probe / hor. perturbator
S3	vert. perturbator
S 5	movable bunch mon.
F5	radial probe
S6	radial probe
(F6)	Faraday cup / screen monitor
S7	bunch monitor
F7	radial probe
S9	radial probe
SII	bunch mon.(array of triangle plates)
S12	bunch monitor

Diagnostics used

Orbit Matching

- The beam follows a complicated trajectory from the injection line through to the stripping foil.
- The horizontal orbit is currently optimised 'by hand' to ensure the largest transmission...
- centre of foil is not necessarily optimal...!

Match the vertical orbit using 3 steerers in injection line, using vertical double plate BPM to minimise vertical coherent oscillation

Performed on 20/3/14 and again for more data on 24/3/14.

Showed existing empirical optimisation was fairly successful.

Injection line (green) for the Hions into the ring

Figure from S. Machida, 24/3/14

Closed Orbit Distortion (no RF)

Norm. response =

peak height of nth turn peak height of 0th (H-) turn

Closed orbit distortion

From Y. Ishi 1/11/2013

Closed Orbit Distortion with RF

- Study effects of corrector with RF cavity in place
- Closed orbit measurement with acceleration

Beam spirals outward as it is accelerated

COD Correction

Correction methods tried:

1) Main corrector pole

We achieve some correction, but it is not perfect, even with highest possible current

2) Additional coils on main magnet

Not successful at present - complex excitation of magnets

Field index measurement

$$k = \gamma^2 \frac{df/f}{dr/r} - (1 - \gamma^2)$$

df/f from RF programme dr/r from measurement (also assume gamma from RF)

Dispersion

We have measured the dispersion:

- in the main ring
- at the position of the foil
- at a 'slit' before injection

All have different methods!

Dispersion in the ring

 If we use the same data as field index measurement, we can calculate D = dr/(dp/p)

 $D \sim 0.6$

Three probes give slightly different results

we also did this for various corrector settings

Dispersion at the foil

"Equivalent momentum method"

Tune and profile at foil with different magnetic strength

Science & Technology

Facilities Council

S. Machida

0.96

0.97

0.98

0.99

1 1.01 1.0 Relative field strength

Dispersion at the foil

Measured dispersion function at foil after B calibration.

$$dr/(-dB/B) = -0.59 \pm 0.07$$

 Good agreement with Malek's calculation.

$$dr/(dp/p) = -0.57$$

nb. definition of dispersion in a transport line

$$\begin{pmatrix} D_f \\ D'_f \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} D_i \\ D'_i \end{pmatrix} + \begin{pmatrix} D_p \\ D'_p \end{pmatrix} = \begin{pmatrix} 0.52 \\ -0.033 \end{pmatrix}$$

S.Y. Lee 'Accelerator Physics' pp. I 16 'Dispersion vector'

using transfer matrix from tracking

Is fairly consistent with 0.6 value in ring

Dispersion control: Dispersion at the slit before injection

- 1. Setup transfer line with calculated magnet settings
- 2. Adjust BM2, Q6, BM3, Q7, Q8 by ratio (-2%, -1%, 0%, +1%, +2%)
 - Move slit after Q8 and record bunch monitor signals on M1 & M2 for each slit position
 - 'Peak ratio' = P2(H- peak)/P1

Experimental data

0.25 ● ● -0.02 Fitted data -0.01 Fitted data **0.0** 0.20 Fitted data 0.01 Fitted data 0.02 Fitted data p2/p1 [arb] 0.10 0.05 0.00 170 175 180 190 185 195 Slit position [mm]

Setup I (usual)

Setup 2 30/06/14

nb. lower transmission.

Dispersion results

$$D=dx/(dp/p)=-0.18m$$
cf. From inj. line model
$$D(s1)=-0.431$$

$$D=dx/(dp/p)=-0.36m$$
cf. From inj. line model
$$D(s1)=-0.981$$

We found that the measured dispersion is not that predicted by the model - by more than a factor of two.

Why is the dispersion not as predicted?

- KURRI team have now re-measured this using real momentum change (adjusting the linac) & profile monitor and the result is consistent.
- In high D' region, D can easily vary with small error in magnet field setting.

From Y. Ishi

Image: T. Uesugi

It is very important to understand the real field of injection line magnets!

Dispersion and COD calculation

D. Kelliher

Starting with field in a scaling FFAG

$$B_z = B_{z0} \left(\frac{r}{r_0}\right)^k$$

Can show dispersion D is given by

$$D = \frac{r}{k+1} = \frac{r_0}{k+1} \left(\frac{p}{p_0}\right)^{\frac{1}{k+1}}$$

 Calculate off-momentum closed orbit in Zgoubi, compare dispersion with prediction

- A large (+/- 30 cm) COD is measured at the probes.
- We determined that the major source of COD is in the cavity region. Simulate in Zgoubi model by introducing kick in middle of single drift.

Dispersion distortion

D. Kelliher

- What is effect of dipole kick on dispersion?
 Calculate the off-momentum COD in Zgoubi with the dipole kick and find D_{kick}.
- The dispersion distortion is defined as $D_{kick} D_{ideal}$.
- The distortion in dispersion looks similar to the COD itself, though with the opposite sign.

kick = 312 mradideal lattice 0.70 with kick 0.65 € 0.60 □ 0.55 0.50 0.45 0.40 0.20 distortion (m) 0.15 0.10 0.05 0.00 -0.05 -0.10D distortion reflected COD azimuthal angle (rad)

nb. COD measurement

Foil energy loss

Simulation performed by C. Rogers in Geant 4 for varying target thicknesses to see energy loss and distribution

turn 0

turn 30

turn 70

20 ug/cm2 foil

Foil energy loss

Method: synchronous phase measurement as a function of RF voltage

- 1. check set RF frequency by circulating a bunch with RF off
- set RF voltage & inject beam, find peaks in bunch monitor signal vs those in RF signal to determine phase offset
- 3. fit phase vs RF voltage to determine energy change per turn

$$dW = V_0 r_c sin(\phi_s + \phi_c)$$

Preliminary data had some issues We have re-done the experiment Still analysing...

Foil scattering

 Need to establish emittance growth from foil vs emittance growth from space charge

- Look at effect of foil on beam emittance
 - No RF
 - Inject 8 micron geometric emittance
 - Lose 50% of beam in first 200 turns
 - Injection cycle is ~ 160 1200 turns

C. Rogers

Lower emittance growth for 10 ug/cm2 foil

Future work

- Understand injection line magnets to control dispersion
- Re-attempt dispersion matching (real p shift)
- Optics matching (in progress with new fluorescent monitor system)
- Full analysis of foil energy loss data
- Further simulation work including space charge
- Develop methods for emittance growth measurement

Beam current/power

With linac & H- injection:

IOnA average current (N=3.12 E+9 ppp)

100 MeV, 20Hz rep rate

Bunch length < 100 us (injected), 0.1 us (extracted)

Average beam power = 10E-9[A]*100E+6[eV]=1W

Duty cycle factor: 0.1 us @ 20Hz = I/(0.1E-6*20) = 5E+5Instantaneous beam power = 500 kW

nb. Linac can in principle go up to 5mA & 100 Hz
This would give 5uA average current
Average power = 500 W
Instantaneous power (@100 Hz) = 1E5 * 500W = 50 MW!

